

Explosive transients: Type la supernovae and white dwarf explosions Kate Maguire (she/her)

Trinity College Dublin

Type la supernovae cosmology results

- 'Pantheon' SN sample 1000 SNe from 0.01 < z < 2.3
- w consistent with -1 (Scolnic et al. 2018)
- Is w time varying?
- H₀ investigating tension between the early and late Universe measurements

Type la SN discoveries in the next decade

Boxes: Total anticipated discoveries across each redshift range

Points: Expected classifications with spec. follow-up (shown

approx. at median z)

Adapted from Scolnic+ Astro 2020 white paper

High-redshift Type la supernovae for cosmology

Euclid

SN Ia DESIRE survey out to z~1.6 (Astier+ 2014)

Potential for SNe Ia out to z ~ 5

Roman Space telescope

SNe Ia out to z~1.7 (Spergel+ 2015)

JWST

Space-based high redshift missions - Euclid + Roman

- Euclid SN Ia DESIRE survey 1800 SNe in 6 months of telescope time
- Similar survey planned with Roman High Latitude Time Domain Survey (HLTDS) + spectroscopy

Type la supernova (and host) spectroscopy is essential

- Aiming for photometric classification for SN Ia cosmology samples
- But spectroscopic validation samples still needed
- ELTs for high-z events
- Multi-object spectrographs e.g.
 4MOST

- Biggest limitations in future SN la cosmology
 - Calibration
 - Lack of knowledge of SN Ia physics, e.g. progenitor evolution with redshift, what exactly explodes

How do Type la supernovae explode?

Scenario 1

Single degenerate?

Red giant? Main-sequence star?

Scenario 2

Double degenerate?

Another white dwarf?

- Progenitor system has never been directly detected
- Most likely both contribute to 'normal' SNe Ia
- Key question is relative rates

Two broad classes of explosion models

What observations can distinguish between explosion scenarios for Type la supernovae?

Why are early SN la light curves interesting?

Ejecta - companion star interaction?

Ejecta mixing?

(Magee & Maguire 2020)

He-shell detonation?

(Noebauer+ 2017)

First days after explosion

Dr. Kate Maguire

Ejecta - CSM interaction?

(Piro & Morozova 2016)

Early flux excesses identified in Type la supernovae

SN 2017cbv

Hosseinzadeh et al. (2017)

Early UV flash SN 2019yvq Miller+ 2020

Properties of early flux excesses

- ZTF sample of 115 SNe Ia Intrinsic rate of 'bumps' of 18 +/- 11%
- Use time scales to determine link to explosion models

How do we identify the origins of flux excesses?

- Very early detection high cadence ground based facilities
- Model are brightest in the UV
- Neil Gehrels Swift observatory rapid UV imaging
- Phase A approved for **UVEX** UV imaging survey + spectroscopy

Early UV
 spectroscopy with
 HST (e.g. Brown et al. 2018) probe diversity

What observations can distinguish between explosion scenarios for Type la supernovae?

Dr. Kate Maguire

Studying nucleosynthesis with late-time spectroscopy

 Outer layers of ejecta become transparent with time

 Any Ni observed at late times is **stable Ni** and highly dependent on density of WD at time of explosion

$$^{56}Ni
ightarrow \, ^{56}Co
ightarrow \, ^{56}Fe$$
 Half-life 6.1 d Half-life 77.3 d

Dr. Kate Maguire

Late-time observations suggest sub-Chandrasekhar mass

<u>explosions</u>

 SNe Ia more consistent with sub-Chandrasekhar mass models

 HST + JWST studies to study Ni/Fe ratios

How do Type la supernovae explode?

Scenario 1

Explosion at ~Mchandra (1.4 Msun)

- Early bumps in 20%(e.g. Deckers+ 2022)
- CSM interaction in 20%

Scenario 2

Explosion sub-M_{chandra} (<1.4 Msun)

- Ni/Fe ratio at late times
- Lack of companion star detections
- Combined observations from early to late times
- More detailed explosion model predictions

Exploring the unknown: faint and fast white dwarf

<u>supernovae</u>

Disruption of a WD by a black hole? (Rosswog+ 2009)

Helium shell detonations? (Shen+ 2010)

White dwarf - neutron star merger? (Metzger 2012)

Dr. Kate Maguire

Taubenberger (2017)

Faster evolving

Proposed explosion mechanism for brighter SNe lax

- Explosion doesn't completely unbind a Chandrasekhar-mass white dwarf (e.g. Fink+ 2014)
- Remnant left behind (~0.2 Msun)
- Pre-explosion imaging suggests blue companion star - He star?

McCully et al. (2014)

SN 2020udy - a bright ZTF-discovered lax

- Very early detection 7 hours after expected first light
- Excellent agreement with Mch deflagration model - most consistent with He-star companion
- No polarisation signature

Dr. Kate Maguire

Viraj R. Karambelkar,¹ Mansi M. Kasliwal,¹ Kate Maguire,² Shreya G. Anand,¹ Igor Andreoni,¹ Kishalay De,¹ Andrew Drake,¹ Dmitry A. Duev,³ Matthew J. Graham,¹ Erik C. Kool,⁴ Russ R. Laher,⁵ Mark R. Magee,² Ashish A. Mahabal,^{6,7} Michael S. Medford,^{8,9} Daniel Perley,¹⁰ Mickael Rigault,¹¹ Ben Rusholme,⁵ Steve Schulze,¹² Yashvi Sharma,¹ Jesper Sollerman,¹³ Anastasios Tzanidakis,¹ Richard Walters,¹⁴ and Yuhan Yao¹

Karambelkar+ (2021)

- Peak of -12.7 mag in r band
- Ni mass of 0.8 x 10⁻³ Msun
- Hybrid CONe WD model deflagration?
- CO + ONe WD Merger?

Dr. Kate Maguire

Ca-strong transients - only found in all-sky surveys

- Far from host centre 8 80 kpc with some strict limits on globular clusters (Lyman et al. 2016)
- Intrinsic preference for remote locations (Yuan et al. 2013, Frohmaier et al. 2018)

Ca-strong transients - faint and fast evolving

- Strong [Ca II] emission at late times
- 33 94% of SNe Ia rate (Frohmaier, Sullivan, KM+ 2018)
- Major contributor to Ca enrichment in the Universe?
- Explanation for observed Ca/Fe over-abundance (de Plaa+ 2007, Mernier+ Mulchaey+ 2014, Mernier+ 2016)?
- He-shell detonations?
- Sell+ (2015) WD+IMBH TDEs?

Lunnan et al. (2017)

Tidal disruptions of WD by intermediate-mass black holes

Simulations of WD+IMBH systems (e.g. Luminet & Pichon 1989; Rosswog+ 2009; Haas+ 2012; Tanikawa+ 2017; Kawana+ 2018; Anninos+ 2018, Tanikawa+ 2018)

WD TDE observables

- Fall-back accretion, X-ray flare peaking at 0.25 keV (MacLeod+ 2016)
- Light curves of optical transients fainter than normal SNe Ia with wide range of widths depending on viewing angle
- AT2016hnk Ca-rich with no Chandra X-ray emission (Sell+ 2018)

- Unexplained X-ray flares identified (e.g. Jonker+ 2013, Glennie+ 2015, Bauer+ 2017)
- LSST-detectable event rate of ~ 14 290 yr⁻¹ (MacLeod+ 2016)
- Connection to other (rarer) exotic transients?

Gravitational wave emission from white dwarfs

- 1) Resolved galactic binaries
- Measure rates of close white dwarfs and interacting systems
- Probe SN Ia progenitor channels

- Calculations for WD + IMBH TDE WD on unbound orbit unlikely to be seen in GW
- In bound orbits get 2) 'extreme mass ratio inspirals'
 - Models for systems up to 100 Mpc (Sesana+ 2008) build-up of signal during last years of inspiral
- Rare events but get early warning of impending EM TDE

Summary

- What time-domain/multi-wavelength observations are critical for answering fundamental science questions for this source?
 - Cosmology coordinated space (high-z) and ground (low-z/mid-z) observations
 - SN la progenitors, physics, & nucleosynthesis ground-based high cadence survey, UV + NIR, low-frequency GW
 - Diversity of WD explosions high cadence ground-based observations, coordinated X-ray, UV & optical, low-frequency GW
- Is this source a potential multi-messenger candidate (i.e., expected to be detected in GW and/or particles/neutrinos)? If so, what is the expected multimessenger output and the prospects for detection in the next 10 years?
 - TDEs from WD+IMBH low-frequency GW
- What is needed for the time domain/multi-wavelength and/or multi-messenger detections described above (more theory work, more observations, new technology, new missions/facilities, etc.)?
 - Theory work on explosion models, coordinated observations, UV, low-frequency GW